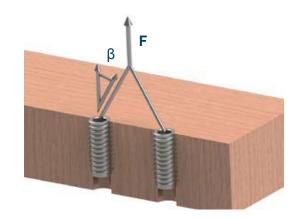


LOAD CAPACITIES SKL / BL

RAMPA®-Inserts types SKL / BL according to ETA 12/0481 for Glulam as well as CLT floor elements


Load capacity 2-strand

Calculated partial safety factors:

- \rightarrow Variable loads γ m = 1,5
- \rightarrow Building material properties $\gamma_q = 1,3$

RAMPA®-Inserts | Type: BL

Art. No.	Insert size	Lifting angle β° Load capacity lbs 0°	Lifting angle β° Load capacity lbs 30°
0046416	25 x 40	1484	1289
0046616	25 x 60	2222	1933
0046816	25 x 80	2968	2578
0046016	25 x 100	3714	3222

RAMPA®-Inserts | Type: SKL

Art. No.	Insert size	Lifting angle β° Load capacity lbs 0°	Lifting angle β° Load capacity lbs 30°
0116616	25 x 60	2103	1815
0116816	25 x 80	2832	2459
0116016	25 x 100	3578	3103

Load table based on ETA 12/0481 of RAMPA GmbH & Co. KG. Read ETA 12/0481 before execution.

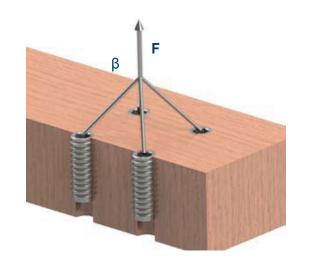
Please use RAMPA®-Inserts type SKL / BL exclusively as described in ETA 12/0481.

Before execution, all calculations must be checked and approved by the responsible planner. The values given in the tables take a vibration coefficient ϕ_2 = 1,3 according to DIN EN 1991-3 into account. For deviating vibration coefficients, the table values must be divided by the respective vibration coefficient of the lifting equipment.

If it isn't known how high the vibration coefficient of the lifting equipment is, a vibration coefficient of ϕ_2 =2 must be used.

LOAD CAPACITIES SKL / BL

RAMPA®-Inserts types SKL / BL according to ETA 12/0481 for Glulam as well as CLT floor elements


Load capacity 4-strand only with load rocker

Calculated partial safety factors:

- \rightarrow Variable loads γ m = 1,5
- \rightarrow Building material properties $\gamma_q = 1,3$

RAMPA®-Inserts | Type: BL

Art. No.	Insert size	Lifting angle β° Load capacity lbs 0°	Lifting angle β° Load capacity lbs 30°
0046416	25 x 40	2968	2578
0046616	25 x 60	4460	3867
0046816	25 x 80	5935	5138
0046016	25 x 100	7428	6427

RAMPA®-Inserts | Type: SKL

Art. No.	Insert size	Lifting angle β° Load capacity lbs 0°	Lifting angle β° Load capacity lbs 30°
0116616	25 x 60	4189	3629
0116816	25 x 80	5681	4918
0116016	25 x 100	7156	6207

Load table based on ETA 12/0481 of RAMPA GmbH & Co. KG. Read ETA 12/0481 before execution.

Please use RAMPA®-Inserts type SKL / BL exclusively as described in ETA 12/0481.

Before execution, all calculations must be checked and approved by the responsible planner. The values given in the tables take a vibration coefficient ϕ_2 = 1,3 according to DIN EN 1991-3 into account. For deviating vibration coefficients, the table values must be divided by the respective vibration coefficient of the lifting equipment.

If it isn't known how high the vibration coefficient of the lifting equipment is, a vibration coefficient of ϕ_2 =2 must be used.

LOAD CAPACITIES SKL / BL

RAMPA $^{\circledR}$ -Inserts types SKL / BL according to ETA 12/0481 for Glulam as well as CLT floor elements


The following boundary conditions apply:

The RAMPA®-Inserts must be installed flush with the surface of the BSH or CLT floor element. Pre-drill diameter over entire screw-in length (softwood):

- → RAMPA® Inserts Type SKL D25 = max. 22,5mm
- → RAMPA® Inserts Type BL D25 = max. 21,0mm

The specified pre-drill diameters are valid exclusively for zinc plated RAMPA socket variants as well as BSH /CLT elements made of softwood. The assembling angle between the insert axis and the surface of the glulam ceiling or the respective CLT layers is 90° (across the grain). The loads specified in this document are only valid for ceiling elements or use in the lateral surface.

Minimum distances for RAMPA®-Inserts in glulam and cross laminated timber (CLT) according to ETA 12/0481 or Eurocode 5:

Any liability for printing and typesetting errors excluded!

Load table based on ETA 12/0481 of RAMPA GmbH & Co. KG. Read ETA 12/0481 before execution. Please use RAMPA®-Inserts type SKL / BL exclusively as described in ETA 12/0481.

Before execution, all calculations must be checked and approved by the responsible planner. The values given in the tables take a vibration coefficient ϕ_2 = 1,3 according to DIN EN 1991-3 into account. For deviating vibration coefficients, the table values must be divided by the respective vibration coefficient of the lifting equipment.

If it isn't known how high the vibration coefficient of the lifting equipment is, a vibration coefficient of ϕ_2 =2 must be used.